
Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

REYES using DirectX 11

Andrei Tatarinov
NVIDIA

REYES is a common approach to generating fine-quality pictures,
which is widely used in movie industry for creating CG and
cartoons. REYES pipeline is a micro-polygonal pipeline, which
subdivides and dices any input primitive into sub-pixel primitives,
which are shaded in object-space and sampled in screen-space by
a huge number of samples, thus achieving high-quality analytical
anti-aliasing and precise attribute interpolation, which help to
create fine images that can be used in movies and cartoons.

REYES is a highly parallel pipeline by its nature, performing
similar actions on a huge set of primitives, making it a good task
for GPU to solve. Several publications were made, describing
different ways of implementing REYES on GPU, including

• Kun Zhou et al., “RenderAnts: Interactive REYES
Rendering on GPUs”, 2009

• Anjul Patney and John D. Owens, “Real-Time REYES
Style Adaptive Surface Subdivision”, 2008

• Andrei Tatarinov, Alexander Kharlamov, “Alternative
Rendering Pipelines on NVIDIA CUDA”, 2009

These implementations are mostly using Compute capabilities of
GPU, without using GPU’s graphics pipeline, or any particular
part of graphics pipeline. Nowadays DirectX11-capable GPUs are
becoming available, making it possible for software engineers to
use DirectX11 features to accelerate existing and develop new
rendering approaches and techniques. DirectX11 presents new
rendering pipeline, which includes Tessellation stage, and new
feature, which is called Compute and is a natural addition to
graphics pipeline, providing fast interop between compute and
graphics. The main purpose of this talk is to show that REYES
can benefit from both of these features, achieving better
performance.

The scheme above shows how REYES pipeline can be mapped on
DirectX11 pipeline. Subdivision stage requires recursion – it

performs recursive subdivision of input primitives, and does
bounds-check on every iteration. Tessellation with stream-out can
be used to perform this stage using graphics pipeline, or
DirectCompute can be used. In case when DirectCompute is used,
persistent threads are implemented which read and write data to
the same input buffer, allowing recursion. Performance details and
analysis of both approaches are provided during the talk.

Tessellation stage of DirectX11 pipeline looks like a perfect
candidate to be used for dicing stage of REYES pipeline, since
dicing stage commonly uses tessellation to generate sub-pixel
quads from a set of subdivided primitives. DirectX11 Hull and
Domain shaders are used to compute dicing factors based on a
shading rate, and non-programmable tessellation unit is used to
generate UV-coordinates for micro-quads.

Dicing stage of REYES pipeline alone usually generates huge
amounts of data, which can’t fit into GPU’s on-board memory.
This is why this stage needs to be pipelined with subsequent
stages – shading and sampling, so that data generated during
dicing would be processed immediately and not be stored
anywhere. Shading in REYES is done per-vertex, not per-pixel,
this is why Domain shader perfectly fits to be used to implement
this stage. Rasterization stage of GPU graphics pipeline is used to
perform sampling. All primitives are rendered to a highly-
supersampled rendertarget, providing high levels of anti-aliasing
and solving a problem of GPU being inefficient at rendering
polygons of sub-pixel size (due to one pixel being expanded into a
whole region of pixels in a supersampled surface).

One of the main difficulties in Compute-based implementation of
dicing, shading and sampling stages is the need to combine them
into a pipeline (due to memory pressure problem described
above), which involves solutions like uberkernels, data storage
structures and task-switching schemes. The idea of using
DirectX11 tessellation to perform dicing is to fully utilize
hardware features of GPU, since GPU already has intermediate
primitive storage structures and scheduling mechanisms which
can be used for REYES purposes. This eliminates the overhead
required for maintaining custom memory structures and
performing custom scheduling schemes. Transition from Compute
to DirectX11 allowed author to achieve speed-ups up to 50%
(with equal shading rates and sample counts). While subdivision
stage runs at approximately the same speed for both CUDA and
Compute, it adds negligible value to the overall performance.
However, using DirectX11 tessellation to pipeline dicing, shading
and sampling stages allows significant performance gain.

During the talk author is going to show the advantages of using
DirectX11 and graphics pipeline to implement REYES compared
to purely compute-based approaches (both from development time
and execution time perspectives). Author provides performance
analysis of different stages of REYES pipeline, including
comparison of software and hardware rasterization and benefits of
using natural pipeline of GPU.

